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Mapping the drivers of within-host pathogen
evolution using massive data sets
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Philip Goulder8,9, Kuan-Hsiang Gary Huang 5,10, Annette Oxenius 11, Rodney Phillips3,5,6,12,

Roger Shapiro13,14, Cloete van Vuuren7, Angela R. McLean3,15 & Gil McVean 1,2,16

Differences among hosts, resulting from genetic variation in the immune system or het-

erogeneity in drug treatment, can impact within-host pathogen evolution. Genetic association

studies can potentially identify such interactions. However, extensive and correlated genetic

population structure in hosts and pathogens presents a substantial risk of confounding

analyses. Moreover, the multiple testing burden of interaction scanning can potentially limit

power. We present a Bayesian approach for detecting host influences on pathogen evolution

that exploits vast existing data sets of pathogen diversity to improve power and control for

stratification. The approach models key processes, including recombination and selection,

and identifies regions of the pathogen genome affected by host factors. Our simulations and

empirical analysis of drug-induced selection on the HIV-1 genome show that the method

recovers known associations and has superior precision-recall characteristics compared to

other approaches. We build a high-resolution map of HLA-induced selection in the HIV-1

genome, identifying novel epitope-allele combinations.
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Variation in multiple host factors, both genetic and non-
genetic, can influence the genetic composition of infecting
pathogens and their subsequent evolutionary trajectory

within a host. Examples, include human leukocyte antigen (HLA)
restriction of epitopes and subsequent escape in HIV-1 and
other viruses1–6, drug-induced selection pressure and appearance
of drug-resistance mutations in viruses, bacteria and
eukaryotic pathogens7–13 and interactions between polymorphic
red-blood cell types and malarial disease14,15. Consequently, the
molecular mechanisms underlying diverse pathogen-related
processes including infection, invasion, immune-response and
drug resistance, can potentially be uncovered by studying the
association between host factors and the genetic composition of
pathogens16–22.

However, while it is now feasible to collect large-scale data on
pathogen genomic variation and host parameters, reliable
hypothesis-free detection of biologically meaningful associations
between host factors and pathogen diversity is challenging for
several reasons; the greatest of which is population structure.
Host genetic variation often has a strong spatial structure arising
from historical patterns of isolation and gene flow. Because of
their commensal nature and mode of transmission, most patho-
gens are likely to share some of this structure, leading to non-
causal association between host and pathogen genetic variation.
For the same reason, geographical heterogeneity among host
factors that influence pathogens causally (e.g., local variation in
treatment protocols) may also lead to indirect correlation between
host and pathogen genetics.

A second major challenge is statistical power. Consider
searching genome-wide for associations between host genomic
factors and pathogen genomic factors, in which the number of
tests carried out could be in the billions. Naïve correction for
multiple testing is likely to eliminate power for anything except
the strongest associations. Consequently, there is a need for
approaches to association testing that enable prior information
about the likely structure of association to be used in the search
for signal.

To date, various approaches to testing for association between
pathogen genetic variation and host factors, both genetic, as in
the case of classical HLA loci, and non-genetic, as in the case of
drug resistance, have been developed16–18,23,24. Standard asso-
ciation tests, which suffered the problems of stratification
described above, were superseded by methods that utilise an
inferred phylogeny of pathogen samples to correct for related-
ness17,22,25–28. Moreover, additional power can be obtained by
explicit modelling of the processes of escape and reversion in the

context of HLA restriction of HIV-117,22,23. However, such
approaches have a number of limitations. For example, they do
not consider recombination in pathogen genomes, they do not
make use of all the data available, they typically do not infer the
strength of host-induced selection or combine information across
nearby sites in the context of epitope mapping and the more
sophisticated approaches are often computationally prohibitive
for very large samples.

To address these limitations we have developed a model-based
approach to inferring the effect of host factors on pathogen
genomic variation. The approach is motivated by the presence of
extremely large databases of pathogen genomic data. Given the
size of the databases (e.g., the Los Alamos database on HIV-1 has
over 150,000 sequences encoding a portion of reverse tran-
scriptase), it is likely that there are sequences closely related to
those that infected the individuals within a particular study in
question. Our approach aims to infer the most likely ancestral
infecting sequence (which may be a mosaic of those in
the database) for each individual and therefore to identify the
pathogen evolution that has resulted directly from exposure to the
current host. Moreover, we model correlations in evolution
among adjacent sites within the pathogen that arise through being
a shared target of selection (e.g., within a restricted HLA epitope
or within a region of a protein where drug resistance and con-
sequent compensatory mutations can evolve). A diagram of the
underlying process and our modelling framework is shown in
Fig. 1. Our methods and inference regime are detailed in the
Methods and Supplementary Methods. We show that the
approach has substantially improved power to detect sites under
selection and, through applications to the evolution of drug
resistance and escape from HLA-drive immune-restriction in
HIV-1, how the method can deliver new insight into important
biological processes.

Results
Simulations and methods comparison. To validate the method
and compare its performance to alternative approaches for
detecting host-induced selection we carried out three simulation
studies. First, we simulated data under the fitted model to eval-
uate power and accuracy. We used HIV-1 protease sequence data
from three major public databases as a reference (Table 1;
n ¼ 162; 901), and simulated 100 replicates of a data set of
460 study sequences with six different HLA-induced selection
profiles, four of which were common (n ¼ 100 each) and two of
which were rare (n ¼ 30 each); Supplementary Fig. 1. We

DB

a b

h �h,i �i�

Fig. 1 The underlying process and our approximation. a The underlying process: infected hosts are circles, coloured by host factor information. Coloured
strips represent the consensus pathogen sequence within infected hosts, and arrows indicate the direction of infection. Sampled hosts with pathogen
sequence information are outlined. A red outline indicates that host factor information is also available. b Our approximation: pathogen sequences in D are
generated from DB, modulated by host factors of D. As jDBj � 0, we assume DB is the set of all possible sequences an individual can be infected with.
Members of D arise from DB through recombination and mutation. We assume all selection along a lineage connecting each member of D to its closest
neighbour in DB (subject to recombination) occurred within the host that the member of D was isolated from. Thus only host factor information for D is
required. In b, there is one green host factor, h. Recombination, shown by the arrow, results in the colouring of the sequence. Three mutations have
occurred: one due to h-associated selection (red star), one reversion (green circle), and one synonymous transition (black cross)
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performed simulations with recombination ranging between 0
and 0.01 (a rate of 0.01 meaning that on average the ancestor of
each study sample copies 100 contiguous codons from a reference
sample before recombination). We performed joint inference on
the HLA-associated selection parameters across the viral sequence
and examined how the size of the sample-specific reference panel
(range: 10–100) affects estimates. Motivation behind the use of
sample-specific reference panel and our approach is given in the
Methods subsection: Restricting DB: sample-specific reference
data sets. In the absence of recombination, parameter estimates
are largely unbiased and accurate, although the rate of reversion
has high variance (Fig. 2; Supplementary Fig. 2). Estimates for
rare alleles perform similarly to those for common alleles
(Fig. 2b). We find little impact of the size of the sample-specific
reference data set and the posterior distributions are well cali-
brated (Supplementary Fig. 3). Recombination leads to a down-
ward bias in estimates of recombination and selection intensity
and upward bias in the rate of reversion (Fig. 2c; Supplementary
Fig. 4) and consequently poorer posterior calibration at sites
under selection (Supplementary Fig. 4). Nevertheless, the inferred
profiles of host-dependent and host-independent selection pres-
sures remain strongly correlated to the truth. We also considered
the impact of error in choosing the sample-specific reference
panel by forcing inclusion of the sequences actually copied. We
find that forcing the true ancestors to be included improves
accuracy by only a small margin (Supplementary Fig. 5) indi-
cating that 100 potential ancestors chosen through Hamming
distance is typically sufficient.

In the second set of simulations we assessed robustness by
simulating data under a birth–death model (without recombina-
tion), setting the current infected population size at 1,000,000 and
sampling proportion at 10% to define DB and sample 1,460 query
sequences with associated host HLA information (see Methods
subsection: Simulation study 2: simulating a sampled birth–death
process for details). We find some attenuation of the selection
signal (and over-estimation of the reversion parameter) but
strong correlation between the inferred and estimated strengths of
host-dependent and host-independent selection (Fig. 2c; Supple-
mentary Fig. 6).

The birth–death simulations also enable comparison of our
approach with five alternative methods for identifying sites under
host factor specific selection (Supplementary Methods subsection:
Simulation study 2: methods comparison): Fisher’s exact test (as
in Moore et al.16); a phylogenetically corrected Fisher’s exact test
(as in Bhattacharya et al.22); an approximate escape rate estimate
(as in Fryer et al.18); a ‘Phylogenetic dependency networks’
approach—PhyloD (as in Carlson et al.25); and PhyloD OR (as in
Carlson et al.21). In each case, we assume that the wild-type
consensus strain is correctly defined and set any non-
synonymous difference from consensus as a candidate for escape.
For each method, we obtained p values or parameter estimates

that provide a metric for the strength of selection conditional on
each HLA type and generated receiver operating characteristic
curves for each simulation (Fig. 2e). We find that our approach
dramatically increases sensitivity for a given false-positive rate
(FPR). For example, at FPR= 0.01, our sensitivity is 0.61,
compared to the second best-performing method, PhyloD, at
0.13. To assess whether the difference between methods decreases
with sample size, we repeated the analysis with 3000 query
sequences. Our method achieves a sensitivity of 0.81 (at an FPR of
0.01), compared to the next best-performing method, PhyloD, at
0.22 (Supplementary Fig. 7). We conclude that augmenting study
data with a large reference data set and modelling the escape
process explicitly provides a substantial gain in the ability to
identify sites under host factor specific selection.

To examine the impact of a reduced reference sequence data
set, we randomly subsampled 10 and 1% of DB from Simulation
study 2. We also considered a leave-one-out (LOO) strategy,
where the reference data are augmented with study sequences,
with the exception of the sample under consideration. We find
that larger reference panels achieve greater accuracy. For example,
at FPR= 0.01, sensitivity ranges from 0.61 with the full reference
to 0.49 with 10% and 0.32 with 1%. The LOO strategy only boosts
power if the reference panel is of the order of the sample size.
However, in the absence of any reference panel, our method with
a LOO strategy still achieves considerably greater power
(sensitivity of 0.34 at FPR= 0.01) than any competing method
(Supplementary Fig. 8).

In the third simulation study (Methods subsection: Simulation
study 3: the effect of population differentiation), we used an
empirical bootstrap approach to assess robustness to population
structure and the impact of both differentiation between D and
DB and relatedness within D, taking the parameters estimated
from empirical data (see Results: HLA-associated selection). We
used viral sequence data from Botswana (n ¼ 343, protease only)
to simulate ancestors and the empirical distribution of HLA
genotype frequencies from this sample. We measured the
accuracy of estimates (both in terms of bias and calibration of
posteriors) for different protease reference panels, ranging from
the ideal panel (i.e., the ancestors used in the simulation), to that
used in this study, to one that considered only the
57,969 sequences known not to come from Botswana. The latter
panel maximises differentiation and also introduces the potential
problem of sequences within D typically being more closely
related to each other than to members of DB. Results are
summarised in Supplementary Figs. 9–11. In terms of bias
(summarised by the frequency-weighted root mean square error
(RMSE) between true and inferred HLA-associated selection
profiles) we find relatively little differences between panels, with
the most diverged reference panel being only 3% worse than the
best. The estimator was well calibrated for each reference panel
used: 95% and 50% credible intervals contained the true value at

Table 1 Data used in this study: public databases

Database Cohort size Details

Los Alamos HIV Sequence
Database54

Protease n= 119,878
Reverse transcriptase n= 148,866

Fed by biweekly downloads of new HIV sequence data submitted to GenBank.
Metadata is extracted from GenBank submissions and manually annotated with
additional information taken from the corresponding publications and through
direct interaction with authors55.

Stanford Drug Resistance
Database9

Protease n= 81,533
Reverse transcriptase n= 88,780

Collection of protease and reverse transcriptase sequences with associated patient
drug prescription data.

HIV positive selection
database56

Protease n= 45,161
Reverse transcriptase n= 45,161

Protease and reverse transcriptase sequence data taken from HIV-1 patient plasma
samples by Specialty Laboratories from 1999 to 200256. The database was created
in order to identify regions of drug selection using estimates of non-synonymous/
synonymous base changes along the viral genome.
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between 91–98% and 45–57% of sites across bootstrap replicates,
respectively. Typically, the LOO strategy had little effect on
estimator performance. We conclude that the approach gives
substantial robustness to population structure and within-sample
relatedness, enabling the integration of highly diverse data sets,
though note that very highly diverged reference data sets (for
example, consisting of a separate subtype) will perform poorly.

Drug-associated selection. To provide empirical validation of
our approach for detecting host factor dependent selection we
analysed HIV-1 data from the Stanford drug resistance database9

in which viral sequences are linked to antiretroviral drug treat-
ment history of the patient. We therefore aim to learn drug-
treatment specific evolution, while other selective factors (e.g.,
selection due to cytotoxic-T-lymphocyte (CTL) pressure, the
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Fig. 2 Simulation results summary. Inference results for Simulation studies 1 and 2 are shown in a–d. a Simulation study 1; r ¼ 0. γ for a common HLA
(n= 100), dNdS ratio, recombination probability between adjacent sites (r), and reversion scaling (ζ). b Simulation study 1; r ¼ 0. γ for a rare HLA (n ¼ 30).
c Simulation study 1; r ¼ 0:01, γ for a common HLA (n ¼ 100). d Simulation study 2, γ for a common HLA (n ¼ 100). In a–d, (except ω in a), averages are
taken over 100 independent MCMC runs on independent simulated data with the same underlying parameters. The true value is shown in blue, mean and
median estimates are in black and red, respectively. White bands enclose 50% credible intervals, in turn enclosed by grey 95% credible intervals. In c, the
truth is rescaled by the average number of individuals between a randomly chosen pair of leaves in the sampled birth–death tree. For ω in a, averages are
taken over a single-MCMC run, chosen at random as ω differs across simulation runs (sampled from the prior). See Supplementary Figs. 2–5 for full results
summaries. e ROC curves for existing method. Six methods used to identify HLA-associated selection on viral sequence are applied to data simulated
under the birth–death process used in simulation study 2. The Inset zooms in to the region enclosed by the black box. ROC curves for 100 independent
birth–death simulations are lightly coloured, and averaged to generate the heavier lines. ROC curves for Fryer Approx, PhyloD and PhyloD OR do not
extend to (1, 1). For Fryer Approx this is because we stop our threshold for estimated rates at 0. For PhyloD and PhyloD OR, it is because many sites will not
be included in leaf distribution or logistic regression respectively. Source data are provided as a Source Data file
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antibody response, or the APOBEC3G response) will be captured
by ω. We analysed protease and reverse transcriptase indepen-
dently and excluded integrase due to lack of data9. Priors on
parameters are given in Supplementary Table 1. We defined the
collection of sequences in hosts not receiving any therapy at the
time of sequencing as DB, and viral sequences in hosts receiving
any treatment (coupled with their drug regime data) as D. To
guarantee the presence of variation in drug selection we introduce
a null class by randomly assigning 2,000 sequences from DB to D.
Details of data preparation are given in the Supplementary
Methods subsection: Query and reference data set preparation.

We estimated γh;i for protease and reverse transcriptase
inhibitors prescribed to at least 10 individuals in D (Fig. 3a;
Supplementary Fig. 12), and identified sites with very strong
evidence for drug-induced escape (median estimate of selection
factor >2 and at least 97.5% of the posterior >1; top-tier) and
moderate evidence (median estimate of selection factor >1.5 and
at least 90% of the posterior >1; second-tier). We compared the
enrichment of sites identified to known (experimentally vali-
dated) major drug resistance mutations (DRMs)9 (Fig. 3b). For
some drugs, DRM data was lacking because the drug is no longer
commonly used (DDC and DLV), was an experimental drug that
failed (αAPA, and ADV) or is now used in small amounts with
other drugs (RTV). We observed strong, statistically significant
and consistent enrichment of DRMs at sites identified as selected;
with elevated enrichment (as measured by odds ratio) in the
strongest DRMs and sites with strongest evidence for selection.
For example, of the 31 strongest DRMs in reverse transcriptase,
11 are found in the top-tier selected sites and a further 6 in the
second-tier. Of the 41 apparent false positive sites, 17 are
described as being selected for in the literature (but not classified
as a major DRM in the Stanford database); for example mutation
at codon 11 of reverse transcriptase is known to be associated with
minor reductions in APV susceptibility29, but is not classified as a
major DRM9. A further three apparent false positive are
DRMs for treatment cocktails including the drug, nine are sites
of DRMs for drugs in the same class but where more specific

information is not provided, seven are DRMs for different drugs
in the same class and only five appear to have no support in the
literature (Supplementary Table 2). False negatives are caused by
sites where the selected codon is more than one nucleotide change
away from the consensus (five mutations), one is an insertion,
eight have in vitro support for drug resistance but are not
documented as being selected for in vivo, seven have no
compelling evidence in the literature and three are genuinely
missed (Supplementary Table 3)9. Further evidence for the
biological validity of the inferred profiles is given by the co-
clustering of related drugs in trees constructed from the selection
intensity profiles (Supplementary Fig. 13). In summary, we find
that the method can identify sites selected by specific drug
treatments in vivo, either directly through resistance or indirectly
through compensation for resistance mutations that reduce
fitness.

HLA-associated selection. While the extent to which host HLA
alleles can influence patterns of escape and reversion in HIV-1
has been studied extensively, the methods developed here provide
additional power and accuracy as well as provide control against
factors such as population stratification and recombination.
Moreover, the methody also provides a framework in which to
combine data from multiple previous studies. We have assembled
nearly 3000 HIV-1 sequences from patients with known HLA
class I genotypes from six studies, of European and African
ancestry representing a mixture of subtype B and C sequences
(Table 2). We augmented the data with HIV-1 genome data taken
from three sources, representing 250,000–280,000 sequences
depending on the gene (Table 1). We analysed the data in two
ways, first by considering escape as deviation from subtype B and
also by considering escape from subtype C. We expect these
analyses to yield similar results, except at sites where subtypes
differ systematically. We analysed data from protease and reverse
transcriptase and inferred the impact of alleles at HLA class I loci
(at 2-digit resolution) jointly. We restricted analysis to HLA
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alleles with at least 10 representatives in the data. We truncated to
2-digit HLA resolution to boost power as the majority of alleles
are rare (61% of 4-digit HLA alleles have <10 copies, compared to
30% at 2-digit resolution). Further, 27.3% of the individuals for
whom we have HLA information were typed to the 2-digit level.
Full details of data preparation are given in the Supplementary
Methods subsection: Query and reference data set preparation.
We define ‘top-tier’ HLA-associated candidate sites as those
where the median γh;i > 2 and the lower 2.5% quantile > 1, and
‘second-tier’ candidate sites as those where the 10% quantile of
γh;i > 1.

To illustrate the value of our approach, we first considered
the B*51 restricted epitope TAFTIPSI in reverse transcriptase

(Fig. 4). We find a strong signal of selection within the epitope,
with the escape site (position 135) experiencing the strongest
rate elevation. Interestingly, a variant at site 129 which is
known to abrogate CTL recognition in vitro30, is highly
conserved in vivo and shows no signal for selection, presumably
due to other fitness consequences. In contrast, we also see
strong evidence for B*51 associated escape around codons
173 and 195, which have not been reported previously.
Other known allele–epitope combinations that we recover
include, for example, B*18 associated selection around
codon 13831–33.

To compare to experimental and previous work on epitope
restriction we classify documented epitopes into an A-list, which

Table 2 Data used in this study: viral sequence data with associated host HLA information

Data set Cohort size Sampling date Geographic region Treatment Study requirements

SSITT57,58 (Swiss
portion)

n= 79 2000 Various cities across
Switzerland

HAART Undetectable VL for >6 months, CD4+

count >300 μl−1. No history of non-
nucleoside reverse transcriptase inhibitors.

SPARTAC59 (UK
portion)

n= 258 Aug
2003–July 2007

UK ART naïve on
recruitment

Primary infection, though definition of this is
complex, see59 for details.

Bloemfontein48,60 n= 278 Feb
2006–Sept 2006

Bloemfontein,
South Africa

ART naïve Chronic infection, low and high CD4+ count
favoured: 96 high (>500 μl−1), 18 medium
(200–400 μl−1) and 164 low (<100 μl−1).

Durban61,62 n= 1,218 1999–2006 Durban, South Africa ART naïve Recruited following voluntary counselling
and testing in antenatal or outpatient clinics.

Mma Bana63 n= 514 July
2006–May 2008

Gaborone, Botswana ART naïve Pregnant women.

Los Alamos Protease n= 432
Reverse transcriptase
n= 334

Many Many Many Many

All remaining sequences with associated host HLA data available in the Los Alamos HIV sequence database54, which were not present in the above studies constitute those data in the final row
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represents the best-defined experimentally determined HIV-1
CTL epitopes, updated yearly34 and a B-list, which refers to the
entire collection of epitopes reported in the literature35. Among
the A-list epitopes, some have documented CTL escape variants,
either in vivo or in vitro. See Supplementary Tables 4 and 5 for
details and Supplementary Notes. We also consider an in silico set
of predictions for strongly-binding anchor residues generated by
Motif-Scan36. We compare these sites to our estimates of HLA-
associated selection across protease and reverse transcriptase
(Fig. 5, Supplementary Figs. 9–13).

To assess overlap between sites identified we measured the
enrichment of sites identified as under selection and used a
permutation strategy to assess significance (Methods subsection:
Testing overlap with A-list and B-list epitopes). Across protease and
reverse transcriptase we find strong enrichment of top-tier signals of
selection at A-list epitopes for HLA-B (Table 3). For example, top-
tier sites have an odds ratio of 63 for enrichment in A-list epitopes
(p ¼ 0:003). As the confidence in the epitope collection or the
strength of selection decreases, so does the enrichment. We find no
evidence for enrichment of selection at computationally predicted
epitopes and little evidence for overlap of HLA-A associated sites,
though in general we note that HLA-A alleles show much weaker
evidence for selection in general (Supplementary Figs. 14 and 17).

We also find very little evidence for HLA-C driven selection at all
(Supplementary Figs. 16 and 18).

Comparing our results to those in Carlson et al.37, focusing on
the well-studied HLA-B associations, we find that 100% of the
sites that are both in our top-tier and q < 0:2 in Carlson et al.37

reside in A-list or B-list epitopes (Supplementary Tables 6 and 7).
Subsets of method specific HLA associations also lie in A-list and
B-list epitopes, which, given the overlap in subtype C viral
samples (100% of subtype C viral sequence data with associated
host HLA information was present in Carlson et al.37) suggest
that the approaches are complementary, each likely detecting
distinct portions of the true underlying signal. For example, our
notion of escape means that we cannot detect HLA-associated
selection to the consensus codon.

Overall, only a small number of sites identified here as being
HLA-associated have been described and experimentally
validated previously; four in reverse transcriptase (Table 4),
and one in protease (Table 5). Conversely, not all previously
reported escape mutation sites are identified here. In some cases
this may be due to low-sample size in this study. However, it is
also possible that earlier studies failed to account adequately for
linkage disequilibrium between HLA alleles. We also identified
potentially novel signals of HLA-driven epitope escape. For
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example, B*45 shows multiple signals of selection around codon
200 of reverse transcriptase (Fig. 5), yet there are no reported
epitopes. This may reflect a historical bias towards studies being
carried out in European-ancestry populations with subtype B
viruses where some HLA alleles and viral epitopes are rare.
However, we also note that results between the subtype B and
subtype C consensus analyses are highly concordant, with a few
interesting exceptions. For example, B*58 shows evidence for
inducing strong selection away from the subtype B consensus
around codon 122–123 of reverse transcriptase but not away
from the subtype C consensus. Interestingly, this is a position of
divergence between subtype B and subtype C viruses and B*58
is typically more common in populations with HIV-1 subtype C
viruses, suggesting that B*58-induced selection pressure may
have driven the fixation of the difference between subtypes.
More generally, we found that average selection intensity away
from the subtype C consensus in individuals carrying subtype B
virus is significantly stronger than the average selection
intensity away from the subtype B consensus (Supplementary
Fig. 20: protease p ¼ 2:8 ´ 10�5, reverse transcriptase
p ¼ 2:0 ´ 10�6; see Methods subsection: The impact of HLA
on HIV-1 sequence evolution for details), though only reverse
transcriptase was significant in the inverse setting (p ¼ 0:0058,
protease p ¼ 0:70). Moreover, we estimate that the combined
contribution of HLA-associated diversifying selection to non-

synonymous viral sequence change represents 59 and 77% of
selection from subtype B and C consensus in protease, and 61
and 78% in reverse transcriptase (Methods subsection: Testing
the impact of HLA on HIV-1 subtype differentiation, and
Supplementary Table 8). In summary, we estimate that HLA-
driven selection accounts for more than half of all HIV-1
coding changes and has contributed to diversification between
subtypes.

To assess the relationship between sequence similarity between
HLA alleles and the inferred HLA-induced selection profiles,
we measured the concordance between dendrograms
inferred from pairwise differences of classical HLA alleles
protein sequences and dendrograms inferred from the estimated
selection profiles (Supplementary Methods; Dendrograms of
selection profiles and comparing topologies). We find that closely
related HLA alleles have closely related selection profiles
for HLA-A (odds ratio= 2.1; permutation p value= 0.017) and
HLA-B (odds-ratio= 3.1; permutation p value= 0.014), but not
HLA-C (odds ratio= 0.71; permutation p value= 0.71). How-
ever, deeper structure within the inferred trees shows little
concordance. These findings provide biological validation for our
results and suggest that future work to incorporate relationships
between HLA allele would be valuable.

Finally, as noted recently38, a number of sites both show
evidence of HLA-driven selection as well as being associated
with evolution in response to drug treatment (for example,
around codon 70 in reverse transcriptase for B*45). Depending
on whether the two types of selection act in the same or
different directions, such pressures could either speed up or
delay the origin of drug resistance. These results suggest that
HLA genotype could be a predictor of the response to drug
treatment.

Table 3 Overlap between sites under selection and known HLA epitopes

Region HLA Selected sites Motif scana B-list A-list

Protease A Top-tier 0.693 (0.43) 1 (0) 1 (0)
Second-tier 0.0855 (2.52) 0.160 (4.12) 0.166 (9.00)

B Top-tier 1 (0) 0.0420 (48.8) 0.0499 (∞)
Second-tier 0.964 (0.20) 0.213 (3.50) 0.0335 (14.0)

Reverse transcriptase A Top-tier 0.953 (0.28) 0.404 (1.28) 1 (0)
Second-tier 0.935 (0.67) 0.122 (1.57) 0.499 (1.61)

B Top-tier 0.137 (3.26) 0.0000290 (55.2) 0.00278 (63.3)
Second-tier 0.303 (1.50) 0.000250 (19.4) 0.00278 (37.7)

Permutation p values for overlap are displayed for each collection of putative epitopes, with odds ratios displayed in parentheses. aPutative epitopes were generated using the subtype C consensus;
results using the subtype B consensus were similar. Source data are provided as a Source Data file

Table 4 Codons in reverse transcriptase showing evidence
for HLA-associated selection

HLA C= B C= C

A*03 135, 166† 135, 136
A*11 126
A*43 118, 135, 139, 140,

141, 142
118, 122*, 123*, 135

A*66 135 135, 138
B*07 159, 162†, 163, 164, 165 159, 162†, 163, 164, 165
B*18 138†

B*27 142 142
B*35 122*, 123*
B*44 204, 207*
B*45 123*, 211 196, 203, 204, 207*, 211
B*51 135† 135†, 173*
B*53 123*
B*58 122*, 123*
B*81 118 118
C*04 210, 211

Sites defined by γh;i > 2 and lower 2.5% quantile > 1. Underline: Site of known drug resistance
mutations. *Site differentiates subtype B and C amino-acid consensus. †Known HLA-site
association. Source data are provided as a Source Data file

Table 5 Codons in protease showing evidence for HLA-
associated selection

HLA C= B C= C

A*31 57, 61, 62, 64
A*66 35, 36*, 37
B*13 62, 63*, 64
B*44 35†, 37, 38, 39 35†, 36, 37, 38, 39, 41*
B*49 64, 65, 66, 67, 68 61, 62, 63*, 64, 65, 67, 68
B*51 37
C*08 14
C*18 35 15*, 35

Sites defined by γh;i > 2 and lower 2.5% quantile > 1. Underline: Site of known drug resistance
mutations. *Site differentiates subtype B and C amino-acid consensus. †Known HLA-site
association. Source data are provided as a Source Data file
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Discussion
Differences between hosts, such as in their immune system, or
treatment received, can lead to host-specific selection regimes and
subsequent adaptation by the pathogen. If within-host adaptation
is at a cost to intrinsic fitness, then, on further transmission,
selection may favour reversion to the fitter, ancestral state. To
learn about such forces, the ideal experiment is to compare the
genetic composition of the original infecting pathogen strain and
that present sometime after successful infection across a large
number of hosts that differ only in the factors of interest. While
only strictly possible in experimental systems, observational
approaches aim to learn about the same processes, but, to do so,
have to make assumptions about the (unobserved) pool of
pathogens to which infected individuals were exposed and the
distribution of potential confounding factors. If assumptions are
not met, power to detect true associations will be reduced and
there is a risk of false positive results. The introduction of phy-
logenetic methods for association testing in pathogen geno-
mics17,20–22,25,26,39 provided a partial solution to many issues, by
using genome-wide relatedness between pathogens as a proxy for
correlation in unobserved confounding (such as population
structure), similar to the use of principal components in the
analysis of human genetic association40. Moreover, by developing
explicit models of molecular evolution in response to host factors,
it is possible to learn relative or even actual rates of escape and
reversion17. However, phylogenetic methods have limitations. For
example, they can be computationally expensive, meaning they
are hard to apply to huge data sets; assumptions of homogeneity
in rates over time and space typically are necessary; and, more
fundamentally, recombination is widespread among pathogens.

To address these shortcomings, we have developed a model-
based approach to association testing that exploits the availability
of extremely large reference data sets on pathogen variation (but
where there is no relevant metadata concerning the factors of
interest), which are likely to contain genomes closely related to
the samples of interest (with relevant metadata). Moreover, we
argue that when identifying host-driven selection, most of the
information lies near the tips of the trees as deeper comparisons
have to integrate over many transmission events. By utilising the
Li and Stephens41 haplotype model, combined with previous
work on modelling adaptive evolution and reversion17,18,42 we
have developed an approach that both dramatically increases
power to detect associations and scales to huge data sets. Further,
the framework can be extended in many ways, for example, to
model the effects of covariates on recombination profile or
intensity, or to incorporate hierarchical correlation structure
between the selective effects of HLA types to boost power.
Importantly, within the data analysed here, we estimate that
between 7% (protease) and 17% (reverse transcriptase) of viral
samples having undergone recombination at least once since their
common ancestor with sequences in the reference data set.

The analysis of in vivo patterns of evolution provides a com-
plementary approach to the in vitro study of drug resistance and
immune evasion. The evolutionary response reflects the combi-
nation of fitness gains of escape and the fitness loss through
modification. Hence, sites with strong resistance may have too
strong a fitness cost to be typically selected for and weak resis-
tance changes that have little fitness impact may be strongly
selected for. Moreover, compensatory changes in the pathogen
genome can potentially counteract fitness loss and hence appear
as part of the resistance response. Our analysis of drug-associated
evolution using data from the Los Alamos database identifies the
majority of major DRMs; sites not identified typically result from
failings of the model (variants that are more than one change
away from the consensus codon, insertions and deletions).
However, we also identify novel sites with compelling evidence

for drug-associated selection, likely reflecting minor DRMs with
small fitness loss and compensatory changes.

The analysis of HLA-associated selection presented here
combines data from across six studies and nearly 3,000 HIV-1
sequences with linked patient HLA class I data. We show the
method can recover well-known epitopes and associated escape
mutations and that there is strong overlap between curated lists of
epitopes and those identified here. However, we also found that
simple in silico epitope prediction fails to provide a good pre-
dictor of the HIV-1 evolutionary response and multiple cases
where curated epitopes do not appear to lead to a substantial
selective pressure. We also showed a preponderance of signals of
escape associated with HLA-B alleles, as opposed to HLA-A and
HLA-C and identified a number of sites where differences
between subtype consensus sequences collocate with sites selected
by particular HLA alleles. Furthermore, by contrasting the
aggregate HLA-associated selection in hosts of subtype B viruses
with hosts of subtype C viruses, we observed differential signals of
selection at sites distinguishing subtype B and C, supporting the
hypothesis that differences in HLA allele frequency between
populations could have contributed to the differentiation of HIV-
1 subtypes43. As field-based sequencing of pathogens becomes
feasible, so does the potential to accumulate vast data sets that can
track spatial and temporal shifts in selection pressures affecting
pathogens and their responses. Such studies will require new
approaches to studying genetic association. While the method
developed here is aimed at detecting within-host evolutionary
responses, future extensions could include adaptation at a
population level, for example through exploiting longitudinal
sampling and/or spatial heterogeneity in treatment.

Methods
Motivation, justification and overview. Our goal is to estimate the location and
nature of host-associated selection upon the pathogen genome sequence through
statistical analysis of association between host factor and pathogen genomic var-
iation. We desire our method to have four properties: the ability to use all available
pathogen sequence data, irrespective of whether host factors have been measured;
the ability to measure the evidence for selection across the genome analysed in a
hypothesis-free manner; the ability to combine information across neighbouring
positions where appropriate; and the ability to account for confounding factors
such as recombination and population structure. To meet these requirements we
have developed a Bayesian model-based approach in which we use an approx-
imation to the coalescent with recombination and codon-level selection42. In
extension to the earlier work, we enable host-specific factors to influence patterns
of variation and consider the case of two data sets. The first, D, represents the
collection of pathogen sequences for which host factor data (e.g., HLA genotype or
drug treatment) is also available. The second, DB, represents a much larger data sets
of pathogen sequences for which host factor data is not available. We use DB to
model the set of potential pathogen sequences that a host can be infected with
(allowing for recombination) and assume that genetic differences between this
reference panel and D largely reflects evolution within the host. Thus host-induced
selection will result in an association between host factors and the evolutionary
changes observed in D. A cartoon of the underlying process and our model is
shown in Fig. 1.

The justification of the approach is that if jDBj � jDj then members of D will
typically coalesce very recently and approximately independently with members of
DB. Thus the prior on D can be modelled with the Li and Stephens imperfect
mosaic hidden Markov model (HMM), utilising a modified NY98 codon model44.
To incorporate host-induced selection, we define a consensus codon Ci at site i and
model selection as a scaled increase in the rate of non-synonymous change away
from Ci . Conversely, we model reversion as a scaled increase in the codon
substitution rate towards Ci . To obtain emission probabilities we integrate over the
distribution of coalescent time between a member of D and DB assuming a
coalescent model.

The HMM formulation enables efficient computation of the probability of
observing a given sequence in D given current parameter values. The product over
all members of D is used to approximate the joint probability P DjDB;H;Θð Þ,
where H is host factor data for members of D and Θ represents the parameters of
recombination and codon substitution. To speed up computation, we a priori
identify a subset of DB for each member of D that is used to model its ancestor. The
model parameters we aim to infer are: the synonymous transition rate, μ, the dN

dS
ratio at each site, ωi , the recombination probabilities between neighbouring sites, ri ,
the rate of reversion ζ i , and the host factor dependent scaling of escape rate at each
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site, γh;i. We impose a piecewise constant prior on γh to enable rapid exploration of
γh;i and regularisation of the inference. While motivated by the size distribution of
epitopes, the piecewise constant prior is extremely flexible, for example
encompassing a small number of discrete sites with high selection parameters.
Other parameters (transition–transversion rate and fraction of codon substitutions
more than one nucleotide change away) are estimated from external data. We use
Markov chain Monte Carlo (MCMC) to sample from the posterior distribution for
all parameters (See Supplementary Methods for details and MCMC moves). To
guard against overfitting, we use shrinkage priors on the dN

dS ratio and host factor
associated selection coefficients. Similarly, the window structure on γh borrows
information across neighbouring sites, further guarding against overfitting in the
absence of signal42.

Statistical and computational details. In order to calculate the likelihood of the
collection of parameters, Θ, governing an evolutionary model, given a collection of
sequence data D, it is important to account for the non-independence of samples
by considering the underlying genealogy G. For our purposes, we are not interested
in estimating G. We, therefore, treat the genealogy as a nuisance parameter and
integrate over it

PðDjΘÞ ¼
Z

G
PðDjΘ;GÞPðGÞdG: ð1Þ

Here, P(G) is our prior on the genealogy G. PðDjΘ;GÞ is the probability of the
data under some parameter values Θ and genealogy G, which can be evaluated
using Felsenstein’s peeling algorithm45. Since the space of genealogies is very large,
evaluating this integral is problematic. However, without recombination it is
possible to estimate using a numerical summation approximation, as employed by
BEAST46 and MrBayes47, for example. However, analysis is limited to hundreds or
thousands of sequences depending on the properties of the analysed sequences. In
the presence of recombination, G becomes an ancestral recombination graph and
so the state space of G becomes far larger, making it impossible to use this
approach in all but the simplest of models, and only for very small sequence
data sets.

The solution that we use is to estimate the integral using an approximation to
the coalescent with recombination41. The model we present has two components:

1. An approximation of the coalescent with recombination.
2. A model of codon substitution.

By combining these two components, we are able to approximate the
probability of observing a given sequence in the presence of host factor dependent
selection, and recombination. We make the assumption that each pathogen
sequence is from a distinct individual. In practice, when applying the model to real
data, we perform a number of data filtering steps to ensure this assumption is
reasonable. We use the Li and Stephens imperfect mosaic HMM to approximate
the coalescent with recombination. In the Supplementary Methods we describe the
Li and Stephens model and the use of the forwards and backwards algorithms in
evaluating likelihoods under this approximation.

In our inference problem we have two data sets. One query data set; D for
which we have associated host factor information and another larger reference data
set; DB without host factor information. Recall from our model summary that we
make two important assumptions:

1. All selection along the lineages connecting a member of D to DB occurred
within the host of the member of D.

2. The reference data set DB is a good approximation of the distribution of
pathogens an individual can be infected with (which is reasonable when
jDBj � 0).

These two assumptions allow us to apply the Li and Stephens approximation. In
the Li and Stephen’s HMM we require emission probabilities. For our model these
will be probabilities of codon substitutions in the presence of some host factor.
Making assumption 1 allows us to approximate PðDjDB;ΘÞ. This is because we
have host factor information for the members of D ¼ D1;D2; ¼ ;Dnf g which we
can use to determine the relevant emission probabilities. I.e., The first assumption
allows us to use the sequence data in DB:

PðDjDB;ΘÞ ¼ PðD1jDB;ΘÞPðD2jDB;D1;ΘÞ
¼ PðDnjDB;D1;D2 ¼ ;Dn�1;ΘÞ: ð2Þ

Using assumption 2, we may write

PðDjDB;ΘÞ � PðD1jDB;ΘÞPðD2jDB;ΘÞ¼PðDnjDB;ΘÞ ð3Þ

� π̂ðD1jDB;ΘÞπ̂ðD2jDB;ΘÞ¼ π̂ðDnjDB;ΘÞ: ð4Þ
Here, π̂ is the function describing the Li and Stephens approximation (described

in the Supplementary Methods) with our model of recombination and codon
evolution. In other words, assumption 2 results in the approximation that D is
generated by independent realisations of recombination and mutation through DB.
This avoids any need for averaging over orderings of D, allowing rapid evaluation
of the approximate likelihood.

Throughout the remainder of the Methods section we will refer to HLA-
associated selection, but note that the method is general and extends to any host
factor associated selection on pathogen sequence.

Codon model of substitution. We use a codon model of substitution model to
describe sequence change. Importantly for our purposes, a codon model allows us
to detect selection through non-synonymous nucleotide changes. At each site we
are interested in detecting if these types of nucleotide changes away from some
wild-type consensus sequence are enriched in a particular HLA background. We
first write down the Nielsen and Yang (NY98) codon model (without HLA-
associated selection)44 and then extend it to incorporate the HLA types of the host
transmitted to (a given member of D). This will allow us to infer HLA-dependent
selection along the pathogen sequence. Note that in Eqs. (5)–(24) we consider
codon substitutions at a single site (and drop any site subscript). However, when
we perform inference we will allow our codon model to be parameterised by
distinct collections of parameters at each site.

In the NY98 codon model44, the substitution rate from codon i to codon j is

qi;j ¼ μ

κ if i and j differ by a synonymous transition

1 if i and j differ by a synonymous transversion

ω if i and j differ by a non-synonymous transversion

κω if i and j differ by a non-synonymous transition

0 otherwise;

8>>>>>><
>>>>>>:

ð5Þ

where κ is the relative rate of transitions to transversions and ω is the ratio of non-
synonymous base changes to synonymous base changes assuming equal codon
usage. The original model44 weighted by the frequency of the codon switched to at
that position to ensure reversibility. This is not a requirement for us. In fact, the
process we want to model is not reversible, as we will include a boost in movement
away from the consensus codon in the presence of a given HLA, and assume a
distinct boost towards consensus independent of HLA (to model reversion). Finally
μ is the scaled mutation rate parameter for the rate of synonymous transversions
measured in units of N generations (where N is the effective population size). We
note that while the original model was used to model fixed substitutions within
species, here (as in many cases) the model is actually of how sequence diversity is
generated within a population sample.

The exact probability of a substitution from codon i to codon j in time t cannot
be solved analytically, though we may estimate it by numerically evaluating the
matrix exponential of the 64 × 64 instantaneous rate matrix described by Eq. (5) 42.
This is computationally expensive so we look for an approximation.

If the expected time until the first coalescence of a given lineage with all other
sampled lineages t, is small (reasonable if the number of sampled sequences in DB

is very large), we can assume that the vast majority of codon changes occur through
single-base changes (as the probability of observing more than one nucleotide
change in a codon is low). This allows us to avoid matrix exponentiation and
reduce computational cost. Consider a switch from codon C1 to codon C2. The
total rate of substitution out of codon C1 is

κβS þ βV þ ω καS þ αVð Þ� �
μ ¼: Λμ; ð6Þ

where βS, βV, αS and αV are the counts of the number of synonymous transitions,
synonymous transversions, non-synonymous transitions, and non-synonymous
transversions from C1, respectively.

If the overall movement away from a particular codon C1 is Λμ, then the
probability a change has occurred in time t is

PðleaveC1jΘ; tÞ ¼
Z t

0
Λμexp �Λμtð Þdt ¼ 1� exp �Λμtð Þ: ð7Þ

Here, Θ is the collection of parameters governing codon substitution. We can
make an approximation by splitting up PðC1 ! C2jΘ; tÞ. We consider two classes
of moves from C1 ! C2: those which result from a single nucleotide change in time
t (e.g., AAA→AAG) and those that result from multiple nucleotide changes in
time t (e.g., AAA→ATA→AAA→AAG). For C1 ≠C2,

PðC1 ! C2jΘ; tÞ ¼ P1
i¼1

PðC1 ! C2ji changes; tÞPði changesjΘ; tÞ ð8Þ

¼ PðleaveC1jΘ; tÞ P1
i¼1

PðC1 ! C2jleaveC1; i changes; tÞ
´ Pði changesjΘ; tÞ

ð9Þ

� 1� exp �Λμtð Þð Þ P C1 ! C2jleaveC1; 1 change; tð Þϕð
þP C1 ! C2jleaveC1;>1 change; tð Þ 1� ϕð ÞÞ ð10Þ

� 1� exp �Λμtð Þð Þ
´ ϕP C1 ! C2jleaveC1; 1 change; tð Þ þ 1� ϕð ÞπC2

� � ; ð11Þ

where ϕ is the probability of undergoing a 1 step change from C1 to C2 and πC2
is

the probability of observing codon C2 at that position in the sequence.
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Thus, for each codon C1, we generate the following collection of probabilities
for state changes at each site

1 step non-synonymous transition

PðC1 ! C2jΘ; tÞ ¼ 1� expð�ΛμtÞð Þ ϕ κω
Λ þ ð1� ϕÞπC2

� � ð12Þ

1 step synonymous transition

PðC1 ! C2jΘ; tÞ ¼ 1� expð�ΛμtÞð Þ ϕ κ
Λ þ ð1� ϕÞπC2

� � ð13Þ

1 step non-synonymous transversion

PðC1 ! C2jΘ; tÞ ¼ 1� expð�ΛμtÞð Þ ϕ ω
Λ þ ð1� ϕÞπC2

� � ð14Þ

1 step synonymous transversion

PðC1 ! C2jΘ; tÞ ¼ 1� expð�ΛμtÞð Þ ϕ 1
Λ þ ð1� ϕÞπC2

� � ð15Þ

� 2 step change

PðC1 ! C2jΘ; tÞ ¼ ð1� expð�ΛμtÞÞ ð1� ϕÞπC2

� � ð16Þ

if C1≠C2, and

No change in codon at the site 1� ðð12Þ þ ¼ þ ð16ÞÞ ¼ ð17Þ
PðC1 ! C2jΘ; tÞ ¼ exp �Λμtð Þ þ 1� exp �Λμtð Þð Þ 1� ϕð ÞπC2

; ð17Þ

if C1 ¼ C2. We estimate πC (for each codon C) and ϕ empirically using the Durban
data set48–50.

Codon model of substitution: adding HLA-associated selection. In order to
account for HLA-associated selection we may choose to incorporate transmission
and HLA proportions in the same way as the existing models17,18. Alternatively, we
can consider a simpler model in which we are only concerned with the HLA type
(h, say) of the sampled host in the smaller population. We explore the latter
approach. For movement away from the consensus codon C at a given site, Λ is
modified to Λ′ in the presence of HLA type h

Λ′ ¼ κβS þ βV þ ω καS þ αVð Þγh: ð18Þ
So, as an example, for a non-synonymous transition from the consensus (which

is predefined, in practice, we set it as either the consensus subtype B, or subtype C
codon at the position) codon C to C2, explicitly writing down the HLA dependence
and using the approximation from Eqs. (13)–(17)

PðC ! C2jh; tÞ ¼ 1� expð�Λ′μtÞð Þ ϕ
κωγh
Λ′

þ ð1� ϕÞπC
� �

; ð19Þ
γh is a scaling of the non-synonymous/synonymous substitution ratio ω

associated with HLA type h, away from C. This weighting provides extra selection
away from the consensus codon C if γh > 1 and less if γh < 1 to create a new total
rate of movement out of the consensus codon C in the presence of HLA type h, Λ′.
Thus an association between a particular HLA type and non-synonymous change
from consensus at the site would result in γh > 1. Notice that no selection is
applied to synonymous codon changes.

Extending to an HLA profile of a host H ¼ fh1; h2; ¼ ; hng

PðC ! C2jH;Θ; tÞ ¼ 1� exp �Λ′μtð Þð Þ ϕ
κω

Q
h2H γh
Λ′

þ ð1� ϕÞπC
� �

; ð20Þ
We also wish to incorporate reversion into our codon model. Given the state of

the codon under consideration, there is some set of nucleotide substitutions
resulting in C at that position. It is these substitutions which we wish to scale
through reversion parameters. We let ζ denote the scaling of selection due to
reversion at a particular site. We assume that each ζ is independent of the host’s
HLA profile, H. By doing so, we are assuming that in the absence of HLA pressure
there is a selection towards the consensus codon C at each site. Note that reversion
only acts on non-synonymous changes that result in the consensus codon C.
Consequently, the parameterisation is identifiable and we are able to distinguish ωi
and ζ i in the product ωiζ i .

Consider the case in which a non-synonymous transition results in the
consensus codon, C, from some codon C1. Then Λ is modified to Λ′:

Λ′ ¼ κβS þ βV þ ω κ ζ þ ðαS � 1Þð Þ þ αVð Þ: ð21Þ
Reversion is therefore modelled by

PðC1 ! CjH;Θ; tÞ ¼ 1� exp �Λ′μtð Þð Þ ϕ
κωζ

Λ′
þ ð1� ϕÞπC

� �
: ð22Þ

ζ is a scaling of the non-synonymous/synonymous substitution ratio ω towards
C. This weighting provides extra selection towards the consensus codon C if ζ > 1
and less if ζ < 1. We assume that the same ζ scales all the potential 1 step non-
synonymous base changes to C.

We have now created a codon model which accounts for reversion and HLA-
associated selection within a host, and can now determine emission probabilities;
εj;i . We define εj;i as the probability of copying the codon at position i from

sequence j (see Supplementary Methods for background details). Therefore, by
evaluating

PðC1 ! C2jH;ΘÞ ¼
Z 1

0
PðC1 ! C2jH;Θ; tÞPðtÞdt; ð23Þ

which is the probability that a change from codon C1 to C2 has occurred in the time
to coalescence with the reference set, we can substitute in the relevant codon
change (C1 ! C2) and determine εj;i . We integrate out t assuming the coalescent
with fixed population size. In the standard coalescent with a fixed population size,
the distribution of the divergence time between a sequence and its closest relative
from among k other sequences may be approximated by an exponential
distribution with rate k

2 PðtÞ ¼ k
2 exp � k

2 t
� �� �

42 (see Supplementary Notes for a
derivation of the mean).

This is simply a case of substituting in and integrating. For example, for a non-
synonymous transition from the consensus,

PðC ! C2jH;ΘÞ ¼ ϕ
κω

Q
h2H γh
Λ′

þ ð1� ϕÞπC2

� �
1� k

kþ Λ′μ

� �
: ð24Þ

Notice that in evaluating this integral we are focused on sequence evolution
between a member of D and its nearest neighbour in DB. Only considering nearest
neighbours in the genealogy has two clear advantages:

1. We only use the parts of the genealogy that contain the most information
about HLA-dependent selection within a sampled host: terminal branches.

2. The resulting reduction in computation time allows us to use far more
sequence data. Using more sequence data will shorten terminal branches and
so increase our power to detect HLA-associated selection.

Using very large data sets is important for our method. As terminal branches
shorten through increased sampling, assumption 1 (that selection occurs in the
member of D along the lineage connecting each member of D to its nearest
neighbour in DB) becomes more reasonable as we may assume that no or very few
transmissions occur along the lineage connecting sequences in D to their nearest
neighbour in DB.

In Eqs. (18)–(24) we considered a single host with an HLA type h or collection
of HLA types H. We can trivially extend this to obtain the desired approximation
of the likelihood given in Eq. (3). Let H be the collection of HLA profiles of the
associated hosts for sequences in D. Let Hj denote the HLA profile of host j. Then

PðDjDB;H;ΘÞ �
Y
j

π̂ðDjjDB;Hj;ΘÞ: ð25Þ
We have now created a model which accounts for recombination using the Li

and Stephens41 approximation and incorporates both reversion and HLA-
associated selection. We perform inference using MCMC.

Restricting DB: sample-specific reference data sets DBj
. In order to determine

the posterior probability of a new state within the MCMC quickly, we keep track of
two large arrays for each query sequence (as well as other quantities required to
evaluate the likelihood). This requires storing two jcodon sequencej ´ jDj ´ jDBj
arrays of doubles. When evaluating the likelihood of observing ~2,000 query
sequences from a collection of ~60,000 reference protease sequences from the
Stanford drug resistance database, over 300 GB of RAM was required! We require a
method to reduce the memory required to perform inference.

We restrict DB to a different subset DBj
for each Dj 2 D. We make the

approximation

PðDjDB;H;ΘÞ �
Y
j

π̂ðDjjDB;Hj;ΘÞ �
Y
j

π̂ðDjjDBj
;Hj;ΘÞ: ð26Þ

If the sequences we choose for each DBj
are similar to the true ancestors of each

of the Dj, then this will be a good approximation.
The simple approach we use to restrict DB is by considering the closest n

sequences to Dj by Hamming distance (the Hamming distance between two strings
is the total number of differences between the strings, giving each difference equal
weighting). A drawback of using Hamming distance to restrict DB is that in the
presence of high recombination rates, one can imagine sequences which should be
included in DBj

but are excluded on the basis this metric.

For the small amount of overhead, this sample-specific restriction reduce the
computational time and memory footprint required by the programme to the
extent that a run of 1,500,000 updates analysing ~1,000 query sequences over a
codon sequences of length ~100, considering the closest 100 reference sequences
according to some metric may be performed in ~24 h on an Intel i7 desktop
machine using <1 GB of RAM.

MCMC inference regime. The structure of the model we have presented lends
itself to inference using MCMC to sample from the posterior. For our MCMC
implementation, we use the Metropolis Hastings algorithm. We fix κ, ϕ and πC for
each codon C at empirical estimates. We perform MCMC moves on the following
collection of parameters:

● The recombination probability ri between neighbouring sites i and i+ 1.
● The non-synonymous/synonymous substitution ratio in the absence of
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reversion or HLA-associated selection at each site, ωj .
● Scaling of selection due to reversion at each site, ζ i .
● HLA-associated scalings of selection at each site, γh;i.

In our sampling scheme we allow ζ i and γh;i to vary via piecewise constant
functions across the codon sequence, which we call selection windows. This is
analogous to the ‘block-like’ model used by Wilson and McVean42. Imposing
this window structure allows information about HLA-dependent selection (and
reversion) to be combined across sites. This makes sense in a biological setting
where sites close together in the coding sequence may result in amino acids lying
in the same epitope or close together in the protein structure. The window model
will act to smooth across sites, but will be overwhelmed if a given site is subject
to strong HLA-dependent selection42. How strict the window model is depends
on the expected number of windows, which is controlled by the parameter pw
(see the merge and split moves in Supplementary Methods MCMC moves
subsection, and Wilson and McVean42). If pw ¼ 1, the number of selection
windows is equal to the number of sites, if pw ¼ 0 then there is just one selection
window. The piecewise constant prior is extremely flexible. Using a piecewise
constant prior in combination with MCMC moves to shrink/expand and merge/
split these blocks allows us to explore the space of HLA-associated selection
rapidly while maintaining a far smaller number of parameters than considering
HLA-associated selection site by site. See Supplementary Methods for MCMC
move details.

Simulation study 2: simulating a sampled birth–death process. For a second
large simulation study, we consider a more realistic generative process for creating
our reference and query data sets. Rather than using an existing large reference data
set and simulating query sequences under our model, we generate an instance of a
sampled birth–death process. We then simulate sequence data down the resultant
sampled birth–death tree.

We simulate the sampled tree backwards in time together with unseen
transmission events using the following procedure:

Let birth rate be λ and the death rate be δ. Thus, backwards in time λ is a death
rate, and δ a birth rate. Let N andM denote the total number of infected individuals
and sampled infected individuals respectively. Setting r as the sampling proportion
for extinct lineages, we consider a collection of competing Poisson processes.

Set t ¼ 0, and let the total number of infected individuals and sampled infected
individuals at the present be N ¼ ~N and M ¼ ~M, respectively.

While M > 0, sample the time of the next event t ! t þ~t where
~t � ExpðNðλþ δÞÞ. First, we determine whether this event is a birth or a death.
Sample u � U ½0; 1�.
● Birth. If u < λ

λþμ, then N ! N � 1 and there are three possibilities here with
the following probabilities.

An unseen lineage coalesces with unseen lineage with probability 1� M
N

� �2
.

An unseen lineage coalesces with a seen lineage with probability 1� M
N

� �
M
N ,

and we record the time t.

A seen lineage coalesces with a seen lineage with probability M
N

� �2
,

M ! M � 1, and we record the time t.

● Death. Else u � λ
λþμ

� �
, and N ! N þ 1.

If û � U ½0; 1� < q then the death event is sampled M ! M þ 1, and we
store the time of the event t.

Given that birth and death events are lineage independent, we may just use the
time information to then generate the a tree. Code is available at https://github.
com/astheeggeggs/mcqueen. We note that this generative process is based on the
equations laid out in the Supplementary Materials of Palmer et al.17 and Frost and
Volz51, and that it is similar to the backwards episodic birth–death process
algorithm outlined by Stadler52, except that we have a fixed birth and death rate
over the entirety of the tree, store unseen transmissions, and do not have mass
extinction events.

We now have a sampled birth–death tree. Given our knowledge of all the
transmission events along the lineages of this sampled birth–death tree, we may
assign HLA types to each node by passing the information down the tree from the
root. Note that at each coalescence event, one of the daughter lineages will be in the
same host, whilst the other will represent the transmission to a new host and HLA
environment. All unseen transmission events which we count are transmissions to
a new host, so also coincide with a change in HLA environment.

We then simulate sequence change down this tree conditional on all the HLA
information, using the codon substitution model outlined in the methods
subsection: Codon model of substitution, again by passing a sequence at the root
and tracking changes down the tree. Finally, we sample m of these sequences at the
leaves to be our query sequence set with associated host HLA information, and the
remainder to define our reference sequence data set, after throwing away the host
HLA information. In this simulation study, we set N= 1,000,000, M= 100,000,
q= 0.1, and m= 1,460, and use the same selection profiles, but increase the

number of flat selection profiles to 16, so that the total frequency of a given HLA
allele more closely resembles that seen in the data, which is important for this tree
based simulation of HLA-associated evolution.

Simulation study 3: the effect of population differentiation. Differentiation
between the query and reference data sets can potential lead to reduced perfor-
mance of estimators due to two factors: confounding between covariates that are
non causal (for example differences in both HLA allele frequency and viral genetic
diversity due to genetic drift) and relatedness within the query population leading
to poorly calibrated estimates. To assess the impact of population differentiation on
performance of our estimator we carried out a parametric bootstrap simulation,
using viral sequence data from the Botswana study (n= 343, protease only) to
simulate ancestors infecting a set of hosts with HLA allele frequencies drawn from
the Botswana population. We used the evolutionary parameters estimated within
this study (including the HLA-associated selection profiles, dNdS , and recombination
probabilities) and performed 100 independent simulations of 1,500 query
sequences with associated HLA information. For each simulation we then per-
formed inference using a range of reference data sets and also considered a leave-
one-out (LOO) strategy in which the reference data are augmented by all sequences
from the query data set except for the sequence under consideration. These will
typically be the most closely related to the query data. The reference data sets we
consider are:

a. DB= The sequences actually simulated from, under the model (Botswana
sequence data). This represents a gold-standard reference data set.

b. DB=All sequence data available in public databases for which no HLA
information is available (n= 162,901).

c. DB= The simulated sequences, using a LOO strategy for each query.
d. DB= a)+ b), using a LOO strategy.

We display plots of inference results for a common and rare HLA type for each
HLA class I molecule (A–C) in Supplementary Figs. 9–11.

To compare the impact of relatedness on our ability to perform inference, we
compare the mean RMSE of the median HLA-associated selection estimates across
sites, weighted by the frequency of the HLA types in our simulated data sets.
Results are displayed in Supplementary Table 9.

As expected, the gold standard DB, a) is the most accurate. We find that the
reference data set that we have aggregated, b) performs almost as well, with the
addition of the simulated sequences to the reference data set performing worse.
This is likely due to the approximate nature of the model used to simulate the
sequence data, but nevertheless is encouraging to see that our current approach
recapitulates parameters almost as well as if we had access to the best possible
query data set, a).

We also examined the effect of restricting the reference data set to the subset
Los Alamos reference data (where we had sampling country information). We then
checked to see if removal of all Botswana samples (n ¼ 73) from this Los Alamos
reference set dramatically reduced our accuracy. We saw similar results for
inference using these two reference sets.

These results indicate that our method is robust to population differentiation
and relatedness within the query data set. Importantly, the effect of removing all
reference data from Botswana has only a marginal impact on accuracy. The LOO
strategy does not typically improve performance, though clearly enables use of the
method when no (or only very distantly related) reference data is available. Users of
our software (available at https://github.com/astheeggeggs/mcqueen) can set DB to
be created using a LOO approach by using the -q or –separate_reference_fasta flags.

Testing overlap with A-list and B-list epitopes. We permute the labels of HLA
types for a class I gene 1,000,000 times, and count the number of overlaps with the
putative epitope sets for each permutation. This leads to an estimate of an alter-
native null distribution (by shuffling we account for possibility that parts of the
region may be epitope rich across HLA types). We then compare this distribution
of counts of overlapping sites to the observed number of epitope overlaps with our
putative selected sites to obtain p values, by determining the proportion of the
shuffled sets with at least as many overlaps as the real data.

The impact of HLA on HIV-1 sequence evolution. To investigate the contribution
of diversifying selection due to HLA pressure, we first evaluate the average HLA-
associated selection away from consensus at each site i, for each individual j in the
sample using the median estimates from the MCMC analysis

Aj;i ¼ ωi καS;i þ αV ;i

� � Y
h2Hj

γh;i; ð27Þ

where αS,i and αV,i are the number of non-synonymous transitions and non-
synonymous transversions from the consensus codon at site i, respectively.

We then determine the collection of Aj,i for which there is increased selection

away from consensus due to HLA-associated selection:
Q

h2Hj
γh;i

� �
> 1. We then

evaluate the fraction of the total mutation rate away from consensus that this
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represented P
i;j:

Q
h2Hj

γh;i

� �
> 1

Aj;i

P
i;j ωi καS;i þ αV ;i

� � Q
h2Hj

γh;i þ κβS;i þ βV ;i

� �� � ; ð28Þ

and the fraction of the mutation rate that resulted in an amino-acid substitutionP
i;j:

Q
h2Hj

γh;i

� �
> 1

Aj;i

P
i;j ωi καS;i þ αV ;i

� � Q
h2Hj

γh;i

� � : ð29Þ

We find that this represents 18 and 28% of all mutations (59% and 77% of non-
synonymous substitutions) away from subtype B and C consensus in protease,
respectively. In reverse transcriptase this represented 18% and 32% of all mutations
(61% and 78% of non-synonymous substitutions) away from subtype B and C
consensus, respectively.

Testing the impact of HLA on HIV-1 subtype differentiation. We wish to
examine whether amino-acid differences between HIV subtype B and C may have
been driven by differences in HLA frequency distributions. To do this, we first use
RIP53 to determine, for each query sample, the viral subtype within each of the
genomic regions analysed. At each site we then calculate (using the inferred evo-
lutionary parameters) the average selection away from each subtype consensus in
those hosts harbouring the subtype B and C viruses separately. In this way, we
obtain an approximation of the average HLA-associated selective pressure away
from the subtype B/C consensus in the geographic regions in which subtype B and
subtype C viral sequences predominantly reside. For example, letting SC be the set
of subtype C viral samples, Hj be the HLA profile of the host in which viral
sequence j resides, and γBh;i denote HLA h associated selection away from subtype B
at site i

AB
i;C :¼ 1

jSC j
X
j2SC

ωi καS;i þ αV ;i

� � Y
h2Hj

γBh;i

0
@

1
A ð30Þ

is the selective effect away from subtype B consensus at site i of HLA alleles
averaged over regions in which subtype C predominates. Results are shown in
Supplementary Fig. 20.

To determine if there is an elevated HLA-associated selective effect on sites that
differ between subtypes B and C, we performed permutation tests. For example,
consider selection away from subtype B consensus. We evaluateX

i2D
AB
i;B � AB

i;C

� �
; ð31Þ

where D is the set of sites at which subtype B and subtype C differ at the amino-
acid level. We then randomly shuffled site labels and re-evaluated this quantity
1,000,000 times to obtain a p value. Resultant p values for protease and reverse
transcriptase are shown in Supplementary Table 8.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Host HLA data used in this study are available from the corresponding author upon
reasonable request. All reference data sets; DB, and query data sets for drug-associated
selection inference are available in the mcqueen paper repository at www.github.com/
astheeggeggs/mcqueen_paper. Source data underlying Figs. 2–5, Supplementary Figs. 2–20,
Tables 3–5 and Supplementary Tables 4–6 and 9 are available in the source data file. Raw
MCMC output for simulation studies, HLA, and drug inference are available at www.github.
com/astheeggeggs/mcqueen_paper.

Code availability
Code implementing our methods is available at www.github.com/astheeggeggs/mcqueen
with no restriction to access, under the MIT licence.
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