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Background: Epidemics of human immunodeficiency virus (HIV) and cervical cancer are

interconnected. DNA hypermethylation of host genes’ promoter in cervical lesions has

also been recognized as a contributor to cervical cancer progression.

Methods: For this purpose we analyzed promoter methylation of four tumor suppressor

genes (RARB, CADM1, DAPK1 and PAX1) and explored their possible association

with cervical cancer in Botswana among women of known HIV status. Overall, 228

cervical specimens (128 cervical cancers and 100 non-cancer subjects) were used.

Yates-corrected chi-square test and Fisher’s exact test were used to explore the

association of promoter methylation for each host gene and cancer status. Subsequently,

a logistic regression analysis was performed to find which factors, HIV status, high

risk-HPV genotypes, patient’s age and promoter methylation, were associated with

the following dependent variables: cancer status, cervical cancer stage and promoter

methylation rate.

Results: In patients with cervical cancer the rate of promoter methylation observed

was greater than 64% in all the genes studied. Analysis also showed a higher

risk of cervical cancer according to the increased number of methylated promoter

genes (OR = 6.20; 95% CI: 3.66–10.51; P < 0.001). RARB methylation showed

the strongest association with cervical cancer compared to other genes (OR =

15.25; 95% CI: 6.06–40.0; P < 0.001). Cervical cancer and promoter methylation

of RARB and DAPK1 genes were associated with increasing age (OR = 1.12; 95%

CI: 1.01-1.26; P = 0.037 and OR = 1.05; 95% CI: 1.00-1.10; P = 0.040). The

presence of epigenetic changes at those genes appeared to be independent of

HIV status among subjects with cervical cancer. Moreover, we found that cervical

cancer stage was influenced by RARB (χ2
= 7.32; P = 0.002) and CADM1

(χ2
=12.68; P = 0.013) hypermethylation, and HIV status (χ2

= 19.93; P = 0.001).
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Conclusion: This study confirms the association between invasive cervical cancer

and promoter gene methylation of tumor suppressing genes at the site of cancer. HIV

infection did not show any association to methylation changes in this group of cervical

cancer patients from Botswana. Further studies are needed to better understand the

role of HIV in methylation of host genes among cancer subjects leading to cervical

cancer progression.

Keywords: Botswana, invasive cervical cancer, human immunodeficiency virus, DNAmethylation, tumor supressor

gene, human papillomavirus

INTRODUCTION

Cervical cancer remains one of the most common cancers
affecting females in low and middle-income countries, where
85% of the estimated 570,000 global annual cases occur (1). The
burden of disease is greatest in Africa due to a high prevalence of
human immunodeficiency virus (HIV) and is increasing rapidly
despite wide usage of antiretroviral therapy (ART) (2, 3). Cervical
cancer mortality rates are high in women in sub-Saharan Africa
including Botswana (1, 4, 5). Human papillomavirus (HPV)
infection has been shown to play a crucial role in the development
of cervical cancer (6). Human papillomavirus is one of the
most common sexually transmitted pathogens, with ∼80% of
women becoming infected at some point in their lives (7). In
∼20% of the infections, the virus is able to persist in epithelial
cells and induce pathological changes in the cervix, ranging
from dysplasia to high-grade cervical intraepithelial neoplasia
(CIN). Women infected with HIV still have relatively high
rates of HPV infection and persistence, with subsequent risk
of cell transformation and progression to cervical cancer (8).
A number of studies performed in Botswana suggest that HIV
might influence the distribution of some HPV genotypes (9–
13). In one study, a significant association in the prevalence of
HPV-16 genotype among HIV-infected patients was reported,
despite over 90% of the patients taking ART treatment at the
time of cervical cancer diagnosis (13). However, it is generally
accepted that persistent high-risk HPV genotypes are necessary,
but not always sufficient, to develop cervical cancer (6). Since
only a small fraction of HPV-infected CIN lesions progresses
to invasive cervical cancer, several studies have indicated that
in addition to HPV, host factors, specifically epigenetic changes,
play a role in cervical carcinogenesis (14–16). It is known that
alterations in DNA methylation are associated with the host
genomic response to HIV infection (17, 18) including premature
aging and disease progression (19). Furthermore, HIV is known
to modify the expression of regulatory and cell-cycle proteins
in the cervix of HIV/HPV co-infected women (20–22). It has
also been discovered that both post-translational modifications
of histones and DNAmethylation at specific loci may be involved
in cervical cancer development, leading to uncontrolled cell
proliferation (23).

In general, epigenetic regulation of gene expression is a vital
process that determines the profile of proteins required to ensure
the proper and timely occurrence of cellular processes including
development, differentiation, organogenesis, stress response,

and programmed cell death (24). One of the most widely
studied epigenetic mechanisms is DNA methylation, a reversible
reaction catalyzed by DNA methyltransferases (DNMTs) (25,
26). Increased DNA methylation in CpG islands (DNA regions
that contain a large quantity of CG repeats) has been shown
to be associated with increasing persistence of high-risk HPV
genotypes (27), severity of CIN lesions (28) and risk of invasive
cancer (29). Among the genes that are candidates as markers of
cervical cancer risk there are genes involved in cell-cycle control
and tissue differentiation regulation (Retinoic Acid Receptor
Beta,RARB); that are positivemediator of programmed cell death
(apoptosis) (Death Associated Protein Kinase 1, DAPK1); that
encode a member of the immunoglobulin superfamily and is
one of the crucial tumor suppressors involved in cell adhesion
(Cell Adhesion Molecule 1, CADM1); and a transcriptional
activator involved in developmental processes (Paired Box 1,
PAX1). To date, there are a limited number of pertinent primary
publications assessing DNA methylation status in patients with
cervical cancer from Africa. Furthermore, no studies have been
explicitly done to evaluate the aberrantly methylated tumor
suppressor genes in the high HIV prevalence setting of Botswana.
Therefore, our study aimed to characterize methylation status
of four host genes (RARB, CADM1, DAPK1, and PAX1) that
have been studied to a great extent in relation to cervical
cancer (28, 30–35). We then explored their possible association
with invasive cervical cancer in HIV-infected and uninfected
women in Botswana with and without invasive cervical cancer.
This may provide insights into potential therapeutic avenues,
especially since DNA methylation could potentially be targeted
using methylation inhibitors (36, 37).

MATERIALS AND METHODS

Study Design
The study sample comprised of specimens obtained from subjects
with (n = 128) and without (n = 100) cancer. We used the
tumor and normal tissue samples available at the National Health
Laboratory (NHL) in Gaborone. All the tissue samples archived
has been stored at room temperature. The extracted DNA was
stored at −20◦C prior to analysis. All samples were selected and
confirmed according to histological analysis. The demographic
and clinical characteristics of patients with invasive cervical
cancer have been previously described (13). However, for control
specimens, age was not accessible and data on HIV status was
incomplete. No outliers were excluded from the analysis. On the
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basis of developed methods, each experiment was conducted at
least twice, with similar results being archived each time.

Sample Selection and Clinical
Characteristics
For this analysis, we used tumor and normal tissue from archived
patients’ materials. The retrospective, cross-sectional study
used formalin-fixed paraffin-embedded (FFPE) tissues from
patients with histological confirmation of invasive cervical cancer
(cases) and from subjects who underwent routine screening
and diagnosed non-cancer (controls). Exclusion criteria among
control subjects included: a history of cervical neoplasia, skin
or genital warts, the presence of other cancers and past surgery
of the uterine cervix. All the study patients were Batswana
women, and all invasive cervical cancer diagnoses were made by
a pathologist at the NHL in Gaborone, whenever possible, patient
demographics, clinical data and HIV status were extracted from
medical records through accessing the Intergraded Patients
Management System.

DNA Extraction, High-Risk HPV Detection,
and Methylation-Specific PCR Analysis
DNA was extracted from FFPE cervical specimens using an
established protocol (38). DNA concentration was measured
and quality assessed. The presence of high-risk HPV DNA
(HPV-16, HPV-18, and other high-risk genotypes, alone or in
combination) in the tissue specimen of women with invasive
cervical cancer was detected using Abbot real-time PCR (Abbot
molecular Inc., Chicago). Extracted host genomic DNA was first
subjected to bisulfite treatment using the EZ DNA Methylation
Kit (Zymo Research, Irvine) following the manufacturer’s
instruction. Bisulfite treated DNA was used to analyze the
promoter methylation regions of four tumor suppressor genes
(RARB, CADM1, DAPK1, and PAX1) by methylation-specific
PCR (MSP), which is the gold standard method of DNA
methylation evaluation (34). Supplementary Figure 1 shows
a graphic representation of the regions used for bisulfite
based methylation measurement for the aforementioned host
genes. Two sets of primers (for methylated and unmethylated
DNA, respectively) were adopted and applied for each of
the four genes examined. See Supplementary Tables 1, 2 for
primer sequences and related MSP conditions. Methylation-
specific PCR reactions were adopted as previously described
(39–42) and modified into a touch-down PCR approach.
PCR was then performed using the aforementioned touch-
down parameters (see Supplementary Tables 2A,B). Touch-
down PCR was designed and used due to its ability to amplify
degraded DNA associated with formalin fixation and long-term
storage in paraffin. PCR products were run on an agarose
gel, and the results are reported as methylated, unmethylated,
or a mixture of both at the target DNA sequence (34–43).
Methylation-specific PCR was performed twice on all specimens
with a third repeat performed if discrepant results were obtained
from the first two runs. Two laboratory technicians not associated
with the study who were blinded to the histological diagnosis
independently read the MSP results.

Statistical Analysis
Three classes of methylation status: fully unmethylated (U), fully
methylated (M) and semi-methylated promoter (MU), were used
for all the analyses. When necessary [M + MU] were combined
together. We first assessed rates of promoter methylation for
each gene and cancer status (presence vs. absence) using Yates-
corrected chi-square test and Fisher’s exact test (when at least
one of the frequency classes was <5). Subsequently, we ran a
logistic regression analysis to test which factors were associated
to the following dependent variables: cancer status, cancer stage
(I–IV), and promoter methylation rate. Factors included: HIV
status, high-risk HPV genotypes, patient’s age (when available),
and promoter methylation rate, when the dependent variable was
either cancer status or cancer stage. Data analysis was carried
out using Statistical Package for Social Sciences (SPSS) version
20 (IBM). Odds ratios (ORs) and 95% confidence intervals (CI)
were calculated. Finally, we evaluated, through Binary Logistic
Regression analysis, the possible influence of the number of
methylated promoter sites on cancer status. We stratified the
methylation data into 5 classes, according to the number of
methylated promoter signals (0, 1, 2, 3, and 4).

RESULTS

Demographic and Clinical Characteristics
of Study Patients
Characteristics of study participants are summarized in Table 1.
All available tissue samples from women with a histologically
confirmed diagnosis of invasive cervical cancer from the previous
study (13) were included (n = 128), while the control group
(non-cancer subjects) was added (n = 100; see Table 1). All
samples studied, excluding 7 (from non-cancer control group),
were positive for high-risk HPV genotypes. Of 128 specimens
from invasive cervical cancer patients, 77 (62.6%) were from
HIV-infected women and 46 (37.4%) were from HIV-uninfected
women. The HIV-infected patients were younger than their
HIV-uninfected counterparts (average age of 43 vs. 61 years,
respectively; P < 0.001) in patients with invasive cervical cancer
(13). Among the non-cancer control group, 24 (24.0%) were
HIV-uninfected, while 10 (10.0%) were HIV-infected. However,
the majority of the samples from the control group lacked HIV
status information and average mean age was not calculated in
the control group due to missing data.

Comparison of Promoter Methylation of
Tumor Suppressor Genes in Invasive
Cervical Cancer vs. Non-cancer Patients
The status of promoter methylation of four tumor suppressor
genes (RARB, CADM1, DAPK1, and PAX1) in 128 invasive
cervical cancer specimens versus 100 specimens of without
cancer is shown in Table 2. Interestingly, the patients with
invasive cervical cancer showed higher frequency promoter
methylation for individual genes: RARB, 94.0%; CADM1,
76.5%; PAX1, 96.5%, and DAPK1, 64.1%, compared to the
control samples (RARB, 50.5%; CADM1, 32.6%; PAX1,

Frontiers in Oncology | www.frontiersin.org 3 February 2021 | Volume 11 | Article 560296

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tawe et al. Cervical Cancer and Host Methylation

81.9%, and DAPK1, 25.0%), Table 2. Yates-corrected chi-
square test results revealed a significant correlation between
the methylation rate by gene and invasive cervical cancer
presence in all the tumor suppressor genes. Interestingly,
RARB gene showed the strongest association compared
to other tumor suppressor genes (OR = 15.25; 95%
CI: 6.06–40.0; P < 0.001).

Cancer, Promoter Methylation, and HIV
Status
Binary Logistic Regression analysis was done to determine
which factors influence cancer presence. Results showed
that cervical cancer was associated with HIV infection (OR
= 5.52; 95% CI: 1.23–24.79; P = 0.026) and promoter
methylation of four tumor suppressor genes, Table 3. RARB
methylation showed a stronger association with cancer in
comparison to the other tested genes (OR = 46.87; 95%
CI: 9.61–228.54; P < 0.001).

TABLE 1 | Demographic and clinical characteristics of study subjects by HIV

status.

Characteristics HIV-

uninfected

N = 70

HIV-

infected

N = 87

Missing

data

Total (n)

Age* in years,

median (IQR)

61 (50–72) 43 (37–49) – –

ICC 46 (35.9%) 77 (60.2%) 5 (3.9%) 128

Non-cancer 24 (24%) 10 (10%) 66 (66.0%) 100

IQR, interquartile range; HIV, human immunodeficiency virus; ICC, invasive cervical cancer.

*Age data available only for ICC samples.

Gene (RARB and DAPK1) Promoter
Methylation Is Associated With Age in
Patients With Invasive Cervical Cancer
We further evaluated if the promoter methylation was associated
with age in the invasive cervical cancer group. After removal
of non significant variables (HIV status and high-risk HPV
genotypes) results showed that there was a positive association of
RARB and DAPK1 promoter methylation with age (OR = 1.12;
95% CI: 1.01–1.26; P = 0.037 and OR = 1.05; 95% CI: 1.00–
1.10; P= 0.040, respectively),Table 3, whereas no association was
found for the other two genes. Note that there was only a weak
non-significant association (P= 0.079) of PAX1methylation with
HPV-16 genotype presence alone or in combination with other
high-risk HPV genotypes.

Assessment of Promoter Methylation Rate
by HIV Infection and Cervical Cancer Stage
Methylation rate by HIV status did not vary significantly in all
the four tumor suppressor genes, Table 3. Instead, the analysis
showed that cancer stage was affected by HIV status (χ2

=

19.93; P = 0.001), RARB (χ2
= 7.32; P = 0.002), and CADM1

(χ2
= 12.68; P = 0.013) methylation status.

Cancer Status According to the Number of
Methylated Promoter Genes
Finally, the possible association among a number of promoter
methylated sites (from 0 to 4) and cancer status was tested in
82 cervical cancer cases versus 83 non-cancer control (Figure 1).
The analysis showed a higher risk of cervical cancer according to
the increased number of methylated promoter genes (OR= 6.20;
95% CI: 3.66–10.51; P < 0.001).

TABLE 2 | Promoter methylation frequency (absolute and relative values) by gene and methylation status, in women with and without invasive cervical cancer.

RARB CADM DAPKI PAXI

Methylation

status

ICC (%) Normal

cervix (%)

ICC (%) Normal

cervix (%)

ICC (%) Normal

cervix (%)

ICC (%) Normal

cervix (%)

U 7 (6.0) 47 (49.5) 24 (23.5) 58 (67.4) 42 (35.9) 75 (75.0) 4 (3.5) 17 (18.5)

MU 19 (16.4) 38 (40.0) 16 (15.7) 13 (15.1) 50 (42.7) 23 (23.0) 16 (14.0) 4 (4.3)

M 90 (77.6) 10 (10.5) 62 (60.8) 15 (17.5) 25 (21.4) 2 (2.0) 94 (82.5) 71 (77.2)

M + MU 109 (94.0) 48 (50.5) 78 (76.5) 28 (32.6) 75 (64.1) 25 (25.0) 110 (96.5) 75 (81.5)

Total 116 95 102 86 117 100 114 92

Comparison: Yates-corrected chi-square value (with P), df = 1; OR (95% CI)

U vs. MU 5.33

(0.021)

3.36

(1.17–9.92)

5.16

(0.023)

2.97

(1.14–7.82)

17.84

(<0.001)

3.88

(1.199–7.60)

(<0.001)* 17.00

(3.63–179.69)

U vs. M 85.99

(<0.001)

60.43

(19.63–

197.4)

39.97

(<0.001)

9.99

(4.51–22.48)

(<0.001)* 22.32

(45.03–

98.94)

(0.001)* 5.63

(1.81–17.45)

MU vs. M 13.64

(<0.001)

3.96

(1.81–8.88)

3.36

(0.016)

5.72

(1.21–9.39)

(0.018)* 5.75

(1.25–26.36)

(0.081)* 0.33

(0.11–1.03)

U vs. [M+MU] 49.50

(<0.001)

15.25

(6.06–40.0)

34.82

(<0.001)

6.73

(3.38–13.52)

31.62

(<0.001)

5.36

(2.86–10.11)

10.88

(<0.001)

6.23

(1.87–22.89)

U, unmethylated promoter; MU, semi-methylated promoter; M, methylated promoter; ICC, invasive cervical cancer; df, degrees of freedom; OR, odds ratio; CI, confidence interval.

*Based on Fisher exact test due to insufficient data counts. Italic indicates P values.
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FIGURE 1 | Cervical cancer status according to the number of methylated

promoters. ICC, invasive cervical cancer. In x-axis a score of 0 indicates “no

methylation,” a score of 1 indicates “1 methylated site,” a score of 2 indicates

“2 methylated sites,” a score of 3 indicates “3 methylated sites,” and a score of

4 “4 methylated sites”. Non cancer (n = 83); invasive cervical cancer (n = 82).

DISCUSSION

In a high HIV endemic setting such as Botswana, cervical
cancer is the leading cause of morbidity and mortality among
women. Our study explored promoter methylation of four tumor
suppressor genes in the cervical epithelium of HPV positive
women with and without invasive cervical cancer in relation to
their HIV status. Previous studies have focused on promoter
methylation of different genes in cervical cancer but there are
few done in relation to HIV. We found a significant association
between cancer, the presence of methylated promoters and the
number of methylated sites. Nevertheless, promoter methylation
among cancer subjects was independent of patient’s HIV status in
our study. We selected four tumor suppressor genes, consistently
demonstrated to be affected in cervical cancer by reviewing
the existing literature. Specifically, we characterized aberrantly
methylated host promoter genes (RARB, CADM1, DAPK1, and
PAX1) (28, 30, 34, 35) and their possible associationwith: invasive
cervical cancer, cervical cancer stage, HIV status, age, high-risk
HPV genotypes. We observed a significant higher frequency of
subjects having promoter methylation signals at the four genes,
RARB (94.0%), CADM1 (76.5%), DAPK1 (64.1%), and PAX1
(96.5%), in patients with invasive cervical cancer compared to
the subjects without cancer (Table 2). Our findings are consistent
with other studies. For example, a study by Virmani et al.
(44) reported a high frequency of promoter methylation among
the US population. Concordant results were also observed in
a study by Mao et al. (45) and Steenbergen et al. (46), where
hypermethylation of the CADM1 gene promoter was reported.
Additionally, the promoter methylation rate of the same gene
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was 83% in cervical carcinoma cases in another study (41).
Interestingly, the promoter methylation of DAPK1 is known to
be associated with aggressive and metastatic phenotype in many
tumor types (47). The promoter methylation rate of DAPK1 in
the present study was higher compared to what was found by
Narayan et al. (30) (43.3%) and Dong et al. (48) (51%). A reason
for the slight differences in our respective results may be due to
different methods used to analyze methylation pattern in the two
studies and the use of different primers detecting different CpGs
within the same CpG island. Moreover, differences in ethnicity
should also be taken into account (30, 48).

Among the four genes, RARB gene promoter methylation
showed the strongest association to cancer when compared
to other genes at the Binary Logistic Regression analysis
(OR = 15.25; 95% CI: 6.06–40; P < 0.001; Table 2). RARB
promoter methylation has been shown to be an early event in
multistage cervical carcinogenesis with overall high frequencies
of promoter methylation reported in cervical cancer specimens
(32, 44). Our data further confirm the possible role of promoter
methylation of RARB, CADM1, DAPK1, and PAX1 in cervical
cancer tumorigenesis. Our results corroborate a review which
summarized the results of 51 published studies on methylation
analyses performed in cervical tissues and cells, which suggested
that the combination of RARB, CADM1, and DAPK1 genes is the
most promising methylation panel for obtaining an appropriate
predictive tool of cervical cancer screening (28). Again, a study by
Narayan et al. (30) has found that RARB promoter methylation
was associated with cervical cancer prognosis, i.e., 80% of the
patients with RARB hypermethylation either died of cancer or
only partly responded to treatment. Interestingly, Choi et al.
(49), have observed the inverse relationship between the levels
of RARB protein expression and expression of squamous cervical
cancer antigen which is an early tumor marker for diagnosing
cervical cancer and monitoring responses to treatment in the
event of relapse. We are limited by the lack of data on squamous
cervical cancer antigen to know the association with RARB
protein expression.

We observed that, among the cancer subjects, methylation
rate according to HIV status did not vary significantly in all
four tumor suppressor genes. This may be consistent with
the evidence that cervical precancer in HIV-positive women is
associated with high levels of methylation of high-risk HPV
genome, thus raising the possibility that HIV influences the
methylation of HPV viral genome rather than the host genome
in the rapid progression of cancer (50). These findings might
even help to understand the clinical behavior and treatment
response of cervical cancer patients with HIV infection as shown
by Ferreira et al. (51). Despite the proof that previous work
described a relation between HIV and methylation of host cell
genes, resulting in an upregulation of DNA methyltransferases
expression and activity in HIV infected cells (52, 53), medical
community continues to explore the effect of HIV on cervical
premalignant lesions with subsequent progression to cancer.
However, the lack of correlation between HIV and methylation
in our study may be due to: (i) the control samples lacked HIV
status information; (ii) we were unable to control for age (known
to affect methylation rate in several genes) among the control

samples; (iii) HIV is generally well managed in Botswana and
this was also true for this study cohort (13), possibly implying
a minor impact on methylation homeostasis also based on the
length of ART; (iv) the methylation status was assessed for only
four promoter regions, then neglecting other possible targets
among several interconnected and regulatory genes. Another
interesting result is the association among number of promoter
methylated sites and cancer status where we found a higher rate
of invasive cervical cancer according to the increased number of
hypermethylated promoter regions.

We also found that invasive cervical cancer and promoter
methylation of RARB and DAPK1 gene was associated with
age, while no association was found for CADM1 and PAX1
gene. Conversely, the study by Narayan et al. (25) demonstrated
that age had no influence on overall frequency of promoter
methylation for RARB and DAPK1. In particular, they did show
that RARB gene promoter was more frequently methylated in
younger patients (34.7% in below 50 years compared to 21.2% in
above 50 years) (25). This contrasting result may be attributed to
different methods employed, including region of the gene used
for analysis, and ethnic differences (25, 43). In this study we
also found that promoter methylation status for all genes taken
individually was not associated with high-risk HPV genotype
presence (HPV-16 and/or HPV-18 and/or other high risk-HPV)
on patients with invasive cervical cancer. Only a weak non-
significant association of PAX1 promoter methylation with HPV-
16 genotype was found. Finally, it should be highlighted that
this unique cohort of cervical cancer patients, in the high HIV
setting of Botswana, provided an opportunity to explore the
interplay between HIV, HPV, and cervical cancer, in a context of
a human genetic background that shows peculiar attributes. In
fact, Botswana is home to a population of which genetic structure
has potential implications on susceptibility and resistance to
infectious diseases but also treatment outcomes (54–57), and has
never been analyzed for epigenetic studies in cancer progression.

Although the study had several merits, there were limitations
on a few fronts that warrant discussion. The controls were
not age matched to cases due to lack of data, therefore we
could not control for potential confounders. Some of the
comparisons between cancer and non-cancer subjects could also
not be performed due to insufficient HIV status from control
patients. The expression of all genes validated for methylation
in this study was not measured. HIV viral load and HPV copy
number were also not quantified. Another limitation of our
study was the limited number of genes (four) analyzed. While,
providing data on wider spectrum methylation, could have shed
more information on the role of epigenetic process on cervical
cancer progression.

CONCLUSION

The current study presents novel initial data showing that
promoter methylation in HIV infected women with cervical
cancer is not significantly different from the HIV uninfected
women with cervical cancer. Genome wide methylation profile
studies are needed to completely shed light on the role of
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HIV in methylation of host genes among cancer subjects
leading to cervical cancer progression. In addition, this study
further substantiated the previous studies results of overall high
frequency of methylation rate in promoter regions of RARB,
CADM1, DAPK1, and PAX1 genes in cervical cancer subjects.
Finally, the number of methylated sites in four genes showed a
higher risk of cervical cancer.
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